On the global estimates of geostrophic and Ekman surface currents
نویسندگان
چکیده
Surface currents in oceanic environments are of crucial importance because they transport momentum, heat, salt, and tracers over large distances that regulate both the local and large-scale climate conditions, and because they contribute to the Lagrangian displacement of floating material, ranging from living resources to marine pollution. In recent decades, the understanding of surface currents has benefited from the opportunity of observing sea level and wind stress via satellite-derived measurements. Combining these parameters into geostrophic and wind-driven components provides an estimate of surface currents with a quarter-degree horizontal resolution at a global scale and at a daily time scale. In the present study, improvements are made on the consideration of the time dependence of the main parameters implied in the determination of the Ekmanwind-driven component, and on the treatment of the equatorial singularity. The resulting Geostrophic and Ekman Current Observatory (GEKCO) estimates were validated with independent observations from both Lagrangian and Eulerian perspectives. The statistics of comparison were significant over the globe for the 2000–2008 period. The only exception was the estimation of meridional current along the equator, which requires further developments of the dynamic model and, probably, more accurate measurements. Applications using our GEKCO surface current estimates in cross-disciplinary approaches from physical oceanography to marine ecology are presented and discussed.
منابع مشابه
Investigation of Geostrophic and Ekman Surface Current Using Satellite Altimetry Observations and Surface Wind in Persian Gulf and Oman Sea
The rise of satellite altimetry is a revolution in the ocean sciences. Due to its global coverage and its high resolution, altimetry classically outperforms in situ water level measurement. Ekman and geostrophic currents are large parts of the ocean’s current, playing a vital role in global climate variations. According to the classic oceanography, Ekman and geostrophic currents can be calculat...
متن کاملSteady State Ocean Response to Wind Forcing in Extratropical Frontal Regions
In regions of strong sea surface temperature (SST) gradients, the surface "geostrophic" currents have a vertical shear aligned with the surface density front defined by the temperature. This surface geostrophic ("thermal wind") shear can balance a portion of the surface wind stress, altering the classic Ekman response to wind forcing. Here we show that these frontal effects cannot be ignored in...
متن کاملمطالعه دمای سطح آب و انتقال اکمن در ناحیه خلیج فارس
The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905). Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport o...
متن کاملEstimates of sea surface height and near-surface alongshore coastal currents from combinations of altimeters and tide gauges
[1] Present methods used to retrieve altimeter data do not provide reliable estimates of sea surface height (SSH) in the nearshore region, resulting in a measurement gap of 25–50 km next to the coast. In the present work, gridded SSH fields produced by Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO) in the offshore region are combined with coastal tide gauge ti...
متن کاملThe monsoon currents in the north Indian Ocean
The north Indian Ocean is distinguished by the presence of seasonally reversing currents that flow between the Bay of Bengal and the Arabian Sea. These currents are located between the equator and approximately 10 N. The Summer Monsoon Current (SMC) flows eastward during the summer monsoon (May–September) and the Winter Monsoon Current (WMC) flows westward during the winter monsoon (November–Fe...
متن کامل